Question		1	Marking details	Marks Available	
1.	(a)		Curve for 1 st step <u>and</u> line for 2 nd step (1) Direction on both steps (1) Labelling of state C (1)	3	
	(b)	(i)	$V_A = \frac{(0.06)(8.31)(250)}{(8.5 \times 10^4)} = 1.47 \times 10^{-3} [\text{m}^3]$	1	
		(ii)	$V_{B} = \frac{(0.06)(8.31)(355)}{(8.5 \times 10^{4})} = 2.08 \times 10^{-3} [\text{m}^{3}]$	1	
		(iii)	$V_{C} = \frac{(0.06)(8.31)(355)}{(7.0 \times 10^{4})} = 2.53 \times 10^{-3} [\text{m}^{3}]$	1	
	(c)	(i)	(alternatively use $\frac{V_B}{V_A} = \frac{T_B}{T_A}$ and $\frac{V_C}{V_B} = \frac{P_B}{P_C}$ allowing ecf) Work done = $p\Delta V = (8.5 \times 10^4)(2.08 - 1.47) \times 10^{-3} \approx 52$ [J] ecf		
	(-)		work done $= p\Delta v = (8.5 \times 10^{\circ})(2.08 - 1.47) \times 10^{\circ} = 52[5]$ ecf Convincing, correct method.	1	
		(ii)	Work done = $-\frac{1}{2}(8.5+7.0) \times 10^4 (2.53-1.47) \times 10^{-3} \cong -82 [J] \text{ ecf}$		
			 for: Evidence for "finding area". for: Convincing algebra. 	2	
	(<i>d</i>)		1 for: Remaining block in column 1: C to $A = -79$ 1 for: All of column 3: A to $B = +131$; B to $C = +34$; C to $A = -161$	2	
			Question 1 Total	[11]	

GCE Physics - PH4

Ρ	9	V	1	7
'	I	v	'	'

Questions			Marking details	Marks Available
2.	(a)		$m = \rho V = 10^3 (1.7 \times 10^{-3}) = 1.7 \text{ [kg]}$	1
	(b)		All points plotted correctly (\pm half small square division) and straight line (1) Sensible scales on both axes (1)	2
	(c)		20±1 [°C]	1
	(<i>d</i>)		3.20 ± 0.05 [min] (or 192 ± 3 s)	1
	(e)		Heat supplied to water in e.g. 2.5 min (Q) = $(3 \times 10^3)(2.5 \times 60) = 4.5 \times 10^5$ [J] (1)	3
			e.g. $\Delta \theta = 95.5 - 32.5 = 63 [^{\circ}C] (1)$ (or equivalent for second and third marks provided consistent for substitution that follows) Rearranging formula for $c = \frac{Q}{m\Delta\theta}$	
			Substitution of values and result (1) $c = \frac{4.5 \times 10^5}{(1.7)(63)} = 4.2 \times 10^3 \text{ [J kg}^{-1} ^\circ\text{C}^{-1}\text{]} \qquad (\pm 0.1 \times 10^3)$	
	(f)	(i) (ii) (iii)	[All] temperature measurements lower [because heat taken by container (heat lost) i.e. some reference to heat going elsewhere or lost] (1) Gradient of graph shallower or $\Delta\theta$ smaller (1) <i>c</i> larger (overestimated) (1) No ecf within this question part.	3
			Question 2 Total	[11]

Question		Γ	Marking details	Marks Available	
3.	(a)		Rearranging Hooke's Law $k = \frac{F}{e} = \frac{mg}{e}$ (1) Substitution and correct result with <u>UNIT</u> $\frac{(2000)(9.81)}{(0.15)} = 1.31 \times 10^5 \text{ N m}^{-1}$ (1)	2	
	(b)	(i)	$e = \frac{(75+85)g}{(1.31\times10^5)} = 0.012 \text{ [m]} = 1.2 \text{ [cm]} \text{ (allow ecf for } k\text{)}.$ Correct method. (1) Correct result. (1)	2	
		(ii)	$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{2160}{1.31 \times 10^5}} = 0.81 [s]$ Substitution into formula. (1) Correct result.(1) Award 2 marks for answer of 0.78 [s]	2	
		(iii)	Natural frequency of system is $\frac{1}{0.81} \cong 1.24$ [Hz]; the frequency of driving force is essentially equal to this; so resonance occurs. (1) (need all three points) Accept 1.28 [Hz]. Amplitude of oscillation becomes large/maximum (1)	2	
	(c)		Any 3x(1): - return <i>quickly</i> to equilibrium - critical damping - avoid resonance / large amplitude - reduce oscillations - dissipating energy Accept: - comfortable ride - braking better on rough surfaces	3	
			Question 3 Total	[11]	

Question			Marking details	Marks Available
4.	(a)	(i)	$\omega = \frac{45(2\pi)}{60} = 4.71 \text{ [rad s}^{-1}\text{]}$ Conversion from rotations to radians, with the '45'. (1) Conversion from minutes to seconds and convincing working. (1)	2
		(ii)	$velocity = \omega r = (4.71)(0.08) = 0.38 \text{ [m s}^{-1}\text{]}$ Formula and substitution. (1) Result. (1)	2
		(iii)	acceleration = $\omega^2 r = (4.71)^2 (0.08) = 1.77 \text{ [m s}^{-2}\text{]}$ Formula and substitution. (1) Result (1)	2
		(iv)	Towards point Q, or towards centre of circle.	1
	(b)	(i) (ii)	$A = 0.080 \text{ [m]}$ $T = \frac{2\pi}{\omega} = \frac{2\pi}{4.71} = 1.33 \text{[s]}$	1 1
		(iii)	$\omega = 4.71$ $a = -1.77 \sin(4.71 \times 0.20) = -1.43 [\text{m s}^{-2}]$ Substitution of time (1). Result with minus sign (1)	2
		(iv)	A body moves with SHM if its acceleration - is directly proportional to its displacement from a fixed point - is always directed towards that [fixed] point 1 for: each statement	2
		(v)	$a = -\omega^{2} A \sin(\omega t);$ $x = A \sin \omega t$ so substitution gives: $a = -\omega^{2} x$ convincing manipulation. (1) final expression linking to SHM.(1)	2
	(c)		$x = 0.06 \sin\left(4.71t - \frac{\pi}{2}\right).$ 1 for: each correct parameter inserted.	3
			Question 4 total	[18]

Question		1	Marking details	Marks Available
5.	(a)	(i)	The [vector] sum of the momenta of bodies [in a system] stays constant [even if forces act between the bodies] provided there is no external [resultant] force.	2
		(ii)	Idea of conservation of momentum i.e. expression or statement of $p_i = p_f + m_e v$ (1) No need to specify here that momentum of the hydrogen atom is	2
			initially zero. Substitution of values and convincing manipulation. (1) $\frac{6.63 \times 10^{-34}}{620 \times 10^{-9}} = -\frac{6.63 \times 10^{-34}}{620 \times 10^{-9}} + (1.67 \times 10^{-27})v$ $v = 1.28 \text{ [m s}^{-1]}$	
		(iii)	$E = hf = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^8)}{620 \times 10^{-9}} = 3.2 \times 10^{-19} [\text{J}]$	1
	(b)	(i)	Equating momenta, rearranging and substitution (1) $mv = \frac{h}{\lambda}$ $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{(1.67 \times 10^{-27})(1.28)} = 3.10 \times 10^{-7} [m] (= 310 \text{ nm})$ Correct value of wavelength (1) (allow ecf if substitution incorrect but calculation consistent)	2
		(ii)	Ultraviolet. ecf	1
			Question 5 total	[8]

Question			Marking details	Marks Available
6.	(a)	(i)	$\frac{F}{m} = -\frac{GM}{r^2} = -\frac{(6.67 \times 10^{-11})(1.99 \times 10^{30})}{(1.50 \times 10^{11})^2} = [-]5.90 \times 10^{-3} \text{ N kg}^{-1}$ formula and substitution (1) result with <u>UNIT</u> (1).	2
		(ii)	$-\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(1.99 \times 10^{30})}{(1.50 \times 10^{11})} = -8.85 \times 10^8 [\text{J kg}^{-1}]$ formula and substitution (1) result with sign (1) ecf	2
	(b)	(i)	$r_{1} = \left(\frac{M_{2}}{M_{1} + M_{2}}\right) d = \left(\frac{1.90 \times 10^{27}}{1.99 \times 10^{30} + 1.90 \times 10^{27}}\right) (7.79 \times 10^{11})$ or with approximation (1) = 7.43 × 10 ⁸ [m] (1). 7.43 × 10 ⁸ > 6.96 × 10 ⁸ (so centre of mass outside Sun) (1)	3
		(ii)	use of formula and substitution (1) (or with approximation) $T = 2\pi \sqrt{\frac{d^3}{G(M_1 + M_2)}} =$ result from the substitution (1) $2\pi \sqrt{\frac{(7.79 \times 10^{11})^3}{(6.67 \times 10^{-11})(1.99 \times 10^{30} + 1.90 \times 10^{27})}} = 3.75 \times 10^8 \text{ [s]}$ or with approximation.	4
			$\omega = \frac{2\pi}{T} = 1.68 \times 10^{-8} \text{ [rad s}^{-1}\text{] (allow ecf). (1)}$ speed = $\omega r_1 = (1.68 \times 10^{-8})(7.43 \times 10^8) = 12.5 \text{ [m s}^{-1}\text{] (1)}$	
			Question 6 Total	[11]

Question			Marking details	Marks Available	
7.	(a)	(i)	separation = $2(0.75)\sin 10^\circ = 0.26$ [m] Factor 2 (1) Formula with substitution for one string. (1)	2	
		(ii)	$F = \frac{1}{4\pi\varepsilon_o} \frac{\left(2.55 \times 10^{-7}\right)^2}{\left(0.26\right)^2} = 8.65 \times 10^{-3} \text{ [N]}$ Substitution into formula. (1) Result.(1)	2	
		(iii)	Method. PotentialEnergy = $\left(-\frac{1}{4\pi\varepsilon_o}\frac{q}{(0.26)}\right)(-q)(1)$ Convincing substitution (1) = $\frac{\left(2.55 \times 10^{-7}\right)^2}{4\pi\left(8.85 \times 10^{-12}\right)(0.26)} = 2.25 \times 10^{-3} [J]$	2	
	(b)	(i)	$F = T \sin 10^{\circ} (1)$ Rearranging to $T = \frac{F}{\sin 10^{\circ}} (1)$ Substitution and result. $T = \frac{8.65 \times 10^{-3}}{\sin 10^{\circ}} = 0.050$ [N] (1) (allow ecf for force).	3	
		(ii)	Convincing use of $mg = T \cos 10^\circ$ to obtain $m = 5.0 \times 10^{-3}$ [kg]	1	
			Question 7 Total	[10]	