GCE Physics - PH4

Questions			Marking details	Marks Available
2.	(a) (b)		$m=\rho V=10^{3}\left(1.7 \times 10^{-3}\right)=1.7[\mathrm{~kg}]$	1
			All points plotted correctly (\pm half small square division) and straight line (1) Sensible scales on both axes (1)	2
	(c)		$\left.20 \pm 1{ }^{\circ} \mathrm{C}\right]$	1
	(d)		$3.20 \pm 0.05[\mathrm{~min}]$ (or $192 \pm 3 \mathrm{~s}$)	1
	(e)		Heat supplied to water in e.g. $2.5 \mathrm{~min}(Q)$ $=\left(3 \times 10^{3}\right)(2.5 \times 60)=4.5 \times 10^{5}[\mathrm{~J}](1)$	3
			e.g. $\Delta \theta=95.5-32.5=63\left[{ }^{\circ} \mathrm{C}\right]$ (1) (or equivalent for second and third marks provided consistent for substitution that follows) Rearranging formula for $c=\frac{Q}{m \Delta \theta}$ Substitution of values and result (1) $c=\frac{4.5 \times 10^{5}}{(1.7)(63)}=4.2 \times 10^{3}\left[\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{o}^{-1}\right] \quad\left(\pm 0.1 \times 10^{3}\right)$	
	(f)	(i) (ii) (iii)	[All] temperature measurements lower [because heat taken by container (heat lost) i.e. some reference to heat going elsewhere or lost] (1) Gradient of graph shallower or $\Delta \theta$ smaller (1) c larger (overestimated) (1) No ecf within this question part.	3
			Question 2 Total	[11]

Question			Marking details	Marks Available
3.	(a)		Rearranging Hooke's Law $\quad k=\frac{F}{e}=\frac{m g}{e}$ (1) Substitution and correct result with UNIT $\frac{(2000)(9.81)}{(0.15)}=1.31 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-1}$ (1)	2
	(b)	(i)	$e=\frac{(75+85) g}{\left(1.31 \times 10^{5}\right)}=0.012[\mathrm{~m}]=1.2[\mathrm{~cm}] \quad$ (allow ecf for $\left.k\right)$. Correct method. (1) Correct result. (1)	2
		(ii)	$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{2160}{1.31 \times 10^{5}}}=0.81[\mathrm{~s}]$ Substitution into formula. (1) Correct result.(1) Award 2 marks for answer of 0.78 [s]	2
		(iii)	Natural frequency of system is $\frac{1}{0.81} \cong 1.24[\mathrm{~Hz}]$; the frequency of driving force is essentially equal to this; so resonance occurs. (1) (need all three points) Accept 1.28 [Hz]. Amplitude of oscillation becomes large/maximum (1)	2
	(c)		Any $3 x(1)$: - return quickly to equilibrium - critical damping - avoid resonance / large amplitude - reduce oscillations - dissipating energy Accept: - comfortable ride - braking better on rough surfaces	3
			Question 3 Total	[11]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline \multirow[t]{9}{*}{4.} \& \multirow[t]{3}{*}{(a)} \& (i) \& \begin{tabular}{l}
\[
\omega=\frac{45(2 \pi)}{60}=4.71\left[\mathrm{rad} \mathrm{~s}^{-1}\right]
\] \\
Conversion from rotations to radians, with the '45'. (1) Conversion from minutes to seconds and convincing working. (1)
\[
\text { velocity }=\omega r=(4.71)(0.08)=0.38\left[\mathrm{~m} \mathrm{~s}^{-1}\right]
\] \\
Formula and substitution. (1) \\
Result. (1)
\end{tabular} \& 2

2

\hline \& \& (iii) \& $$
\begin{aligned}
& \text { acceleration }=\omega^{2} r=(4.71)^{2}(0.08)=1.77\left[\mathrm{~m} \mathrm{~s}^{-2}\right] \\
& \text { Formula and substitution. (1) } \\
& \text { Result (1) }
\end{aligned}
$$ \& 2

\hline \& \& (iv) \& Towards point Q , or towards centre of circle. \& 1

\hline \& \multirow[t]{4}{*}{(b)} \& \multirow[t]{2}{*}{| (i) |
| :--- |
| (ii) |
| (iii) |} \& \[

$$
\begin{aligned}
& A=0.080[\mathrm{~m}] \\
& T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4.71}=1.33[\mathrm{~s}]
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\]

\hline \& \& \& $$
\begin{aligned}
& a=-1.77 \sin (4.71 \times 0.20)=-1.43\left[\mathrm{~m} \mathrm{~s}^{-2}\right] \\
& \text { Substitution of time (1). } \\
& \text { Result with minus sign (1) }
\end{aligned}
$$ \& 2

\hline \& \& (iv) \& | A body moves with SHM if its acceleration |
| :--- |
| - is directly proportional to its displacement from a fixed point |
| - is always directed towards that [fixed] point |
| 1 for: each statement | \& 2

\hline \& \& (v) \& $$
\begin{aligned}
& a=-\omega^{2} A \sin (\omega t) ; \\
& x=A \sin \omega t \quad \text { so substitution giv } \\
& a=-\omega^{2} x \quad \text { convincing manipulation. (1) } \\
& \text { final expression linking to SHM.(1) }
\end{aligned}
$$ \& 2

\hline \& \multirow[t]{2}{*}{(c)} \& \& | $x=0.06 \sin \left(4.71 t-\frac{\pi}{2}\right) .$ |
| :--- |
| 1 for: each correct parameter inserted. | \& 3

\hline \& \& \& Question 4 total \& [18]

\hline
\end{tabular}

Question			Marking details	Marks Available
7.	(a)	(i)	$\text { separation }=2(0.75) \sin 10^{\circ}=0.26[\mathrm{~m}]$ Factor 2 (1) Formula with substitution for one string. (1)	2
		(ii)	$F=\frac{1}{4 \pi \varepsilon_{o}} \frac{\left(2.55 \times 10^{-7}\right)^{2}}{(0.26)^{2}}=8.65 \times 10^{-3}[\mathrm{~N}]$ Substitution into formula. (1) Result.(1)	2
		(iii)	$\text { Method. PotentialE nergy }=\left(-\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{(0.26)}\right)(-q)(1)$ Convincing substitution (1) $=\frac{\left(2.55 \times 10^{-7}\right)^{2}}{4 \pi\left(8.85 \times 10^{-12}\right)(0.26)}=2.25 \times 10^{-3}[\mathrm{~J}]$	2
	(b)	(i)	$F=T \sin 10^{\circ}(1)$ Rearranging to $T=\frac{F}{\sin 10^{\circ}}$ (1) Substitution and result. $T=\frac{8.65 \times 10^{-3}}{\sin 10^{\circ}}=0.050[\mathrm{~N}]$ (1) (allow ecf for force).	3
		(ii)	Convincing use of $m g=T \cos 10^{\circ}$ to obtain $m=5.0 \times 10^{-3}[\mathrm{~kg}]$ Question 7 Total	$\begin{gathered} 1 \\ {[\mathbf{1 0]}} \end{gathered}$

